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Abstract. The Lax pair formulation is presented for completely integrable quantum lattice spin
open chains. Specifically, the Lax pair for the one-dimensional Heiser®bgtg open chain is
explicitly constructed. Our construction provides an alternative and direct demonstration of the
quantum integrability of the system.

Recently there has been considerable interest in the study of completely integrable lattice
spin open chains [1-8]. As was shown by Sklyanin [1], there is a variant of the usual
formalism of the quantum inverse scattering method (QISM) [9-11], which may be used
to describe systems on a finite interval with independent boundary conditions at each end.
Central to his approach is the introduction of a new algebraic structure called the reflection
equations (RE) [12]. Although Sklyanin’s argument was carried out only foritheand
T-invariant R matrices, it is now known that his formalism may be extended to apply to
any open chains integrable by the quantBrmatrix approach [8]. Much attention has since
been paid to the solutions of the RE which present boundamyatrices compatible with

the integrability condition. Recently, boundaky matrices have been constructed by de
Vega and Gonalez Ruiz [6] for the Heisenberg spin chain and by the present author [7, 8]
for the one-dimensional (1D) Hubbard chain and the 1D Bariev chain.

On the other hand, the traditional basis for applying QISM to a completely integrable
system is to represent the equations of motion of the system in Lax form. Following Izergin
and Korepin [9, 10], one may show that for systems with periodic boundary conditions, the
existence of the quanturR matrix allows one to express the original equations of motion
in Lax form. In particular, the Lax pairs for a variety of physically interesting models
were given in [13—-16]. Thus, one may expect that there is a variant of the usual Lax pair
formulation for describing quantum integrable lattice spin open chains.

The aim of this letter is to present the Lax pair for the 1D Heisenbéky open
chain in explicit form. Our construction provides an alternative description for the quantum
integrability of the system. Indeed, the bound&rymatrices thus constructed are consistent
with those obtained through solving the RE with the givematrix.
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The Lax pair formulation may be described as follows. Instead of directly considering
the equations of motion, let us study an operator version of an auxiliary linear problem:

"IJj+1:Lj()L)qu j=12...,N

d .

all-'j=Mj()h)l|Jj j=2,...,N B
d d )

awwﬂ =y (M Wy i1 awl =5 (M) .

Here L;, M;, 5 andé’ are some matrices depending on the spectral pararhet@d the
dynamical variables. The consistency conditions for (1) yield the Lax equations

d
ali (M) = M (W)L (M) — L (M) M; (D) j=2....N-1

d
ELN()\) =0v(M) Ly () — Ly (M) My () @

d
g ) = M2) L0 — Li(M)8; ().

A lattice spin open chain is called completely integrable if we can express the equations of
motion in the Lax form (2). In fact, it is readily shown that a transfer matrix

T(0) =Tr(Ky WLy -+ L1 K- (WL (=1) - - Lyt (=) 3)
does not depend on time provided the following constraints hold:

K_()81(=2) = 81(WK_(3) 4)
and

THK L (MSn ) AN W] = TIK 4 () Ay ()8 (=1)] (5)
with

Ay = Ly -+ LIOK_ (ML) -+ Lyt ). (6)

This implies that the system possesses an infinite number of conserved quantities.
As an application, let us consider the 1D Heisenb&r§Z open chain with the
Hamiltonian [1]
S + - -+ 1 2452 1 2
H=— X; (aj o,_1+o0; O’jil) + > COS(Zn)ofaj_l + > sin(2n) coté oy,
]:

+% sin(2n) coté_oy. )

Hereaji = %(ij :I:iajy) ando;', ij, o are the usual Pauli spin operators at a lattice jite
n is a parameter associated with the anisotropy of the Hamiltonian (7) aril thee some
constants describing the boundary effects.

It is not difficult to check that the equations of motion derived from the Hamiltonian (7)
may be cast in the Lax form (2). Indeed, in our case, thend M matrices take the form

sin( + n) cosn + siny coA + n)o; sin 20,
sin 2o/ sin( 4 ) cosn — cos( 4 n) sinna;}
(8)

L) = (
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and
faf”a;l + gaj_ajtl — dUJvZUJil ploj oy —ofo; )
+d(of + 07 ) +q(0; +0; )
M;0) = + + + - -+ :
—plo; 0/ 1 —o0fo; ) goj 0+ fo; 0, —dojo;
+f1(0,+ + 0,~+_1) —d(of +0/_4)
9)
where
f__iZCos(/\+r;)sinn _iZCos{A—sinn
B sin(x + 2n) &= sino. — 21)
__i sin 4y sin 2y __i sin 4y sinA
~ 4sin(x + 2n) sin(x — 2n) P =75 sin + 27) sin(h — 21)
- COSA Sin2psin 2y
1= sin(x + 2n) sin(x — 2p)
From equation (2), it follows that
isin?2p
81N =
1) sin(x + 2n) sin(z — 2n) sin&_
<—§ sin(2n + £_)of + 3 sin(2n) cost_ sin(x — £_)o; ) (10)
X
—sin(x +&_)o;" —Zsin2y — &_)of — 3 sin(2n) cost_
and
i sir? 2
Sn(h) = — e
Sin(A + 2n) sin(A — 2n) sin&,.
5 <—; Sin(2n + £,)of + 3 sin(2n) cosé,. —sin(x + &4)oy )
sin(A — £)oy —Zsin2y — &;)of, — 5 sin(2n) cost, /) |
(11)
We now proceed to study the constraint conditions (4) and (5). Setting
a(r) 0
K_(») = (12)
0 BW
and substituting this in equation (4), one may get
a(r) _ _s?n(k —&) - (13)
B) sin(A + &)
Thus we have determined the boundary makix(1):
1 sin(A — &_ 0
K_(L) = —— ( (= 5-) . ) (14)
Sing_ 0 —Sin(A +&_)

(up to an unimportant scalar factor). In order to determine the boundary natiix), let
us first note that

Av() = Ly Ay 1)L (=A). (15)
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Obviously, the matrix elements ofy_; commute with those ol . Keeping this fact in
mind and noting that the matrix elements4f_, are independent, we immediately obtain

—sin(x +2n — &) 0 )
0 Sin(A + 2n+&5)

(up to an unimportant scalar factor). Evidently, our conclusion is consistent with that given
by Sklyanin [1].

In conclusion, we have presented the Lax pair formulation for completely integrable
guantum lattice spin open chains. As an application, we have constructed the Lax pair for the
1D Heisenberg X Z open chain. The bounda® matrices thus constructed are consistent
with those obtained using Sklyanin’s formalism [1]. Thus our construction provides an
alternative description for the quantum integrability of the system. The extension of our
results to other open chains is straightforward. In particular, the formulation is applicable
to any integrable periodic chains whose equations of motion may be cast into the Lax
form. Combining this with Korepin and Izergin’s work [9, 10], one is led to conclude that
Sklyanin’s formalism may be extended to apply to any systems integrable by the quantum
R-matrix approach [7, 8].

K. (W) = < (16)
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